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ABSTRACT 
Trajectory optimization of a generic launch vehicle is considered in this paper.  The direct application of a 

nonlinear programming method is used in recent literature, which transforms the original problem into a 

nonlinear optimization problem.To study the rocket motion under the influence of gravitational field, 2-D 

simulator is developed. The rocket motion is analyzed for a gravity turn trajectory. The objective is to ensure 

desired terminal conditions as well as minimum control effort in the low dynamic pressure region. Design of 

optimal trajectory for a single stage rocket is a two point boundary problem. Trajectory is designed for a single 

stage liquid rocket.Trajectory is computed for a given initial and final condition using equations of motion of 

rocket in 2-D plane. Hamiltonian is formulated for the given constraints. The non-linear equations are solved 

using steepest descent method.It is assumed that the launch vehicle is not experiencing any perturbations. Results 

are compared for Runge-kutta and Euler‟s integration methods,which clearly brings out the potential advantages 

of the proposed approach. 
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I. INTRODUCTION 
The subject of optimization of a continuous 

dynamical system has a long and interesting history. 

The first example is the Brachistochrone problem 

posed by Galileo, later by Bernoulli and solved by 

Newton in 1696. The problem can be simply stated 

as the determination of a trajectory that satisfies 

specified initial and terminal conditions, i.e., satisfies 

the system governing equations, while minimizing 

some quantity of importance. We use the term 

trajectory here as representing a path or time history 

of the system state variables. Our experience is 

primarily in the field of spacecraft and aircraft 

trajectory optimization so that the trajectories are 

literal [1].There are many techniques for numerically 

solving trajectory optimization problems. Generally 

these techniques are classified as either indirect or 

direct. Indirect methods are characterized by 

explicitly solving the optimality conditions stated in 

terms of the adjoint differential equations, the 

Pontryagin‟s maximum principle, and associated 

boundary conditions. Using the calculus of 

variations, the optimal control necessary conditions 

can be derived by setting the first variation of the 

Hamiltonian function zero. The indirect approach 

usually requires the solution of a nonlinear 

multipoint boundary value problem. There is a 

comprehensive survey paper by Betts [8] that 

describes direct and indirect optimization, the  

 

 

relation between these two approaches, and the 

development of these two approaches. In it, Betts 

points out some of the disadvantages with indirect 

methods which are mentioned below First, it is 

necessary to derive analytic expressions for the 

necessary conditions, and for complicated nonlinear 

dynamics this can become quite daunting. Second, 

the region of convergence for a root finding 

algorithm may be surprisingly small, especially 

when it is necessary to guess values for the adjoint 

variables that may not have an obvious physical 

interpretation. Third, for problems with path 

inequalities it is necessary to guess the sequence of 

constrained and unconstrained subarcs before 

iteration can begin[8]. One of the standard 

procedures for optimizing non-linear system is the 

Gradient or Steepest-decent technique. Reference [3] 

discusses implementation of this method to a launch 

vehicle carrying a hypersonic vehicle as payload. In 

paper[7] the BDH method that is one of the direct 

collocation methods is used. In the direct collocation 

method, not only the control variables but also the 

state variables are discretised. The BDH is using 

linear interpolation for this discretization.An 

optimization algorithm Combination of Gauss 

Pseudospectral Method and Genetic Algorithm is 

presented to solve the optimal finite-thrust trajectory 

with an input constraint in the paper[9]. The 
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simulation results indicate that the GPM-GA 

optimization algorithm has high accuracy, and the 

error with results solved by indirect method is very 

small. In paper[10], two different approaches are 

proposed for simultaneous optimization of staging 

and trajectory of multistage launch vehicles. In the 

first approach, the problems of staging optimization 

and trajectory optimization are solved separately. In 

the second approach, the optimal staging and 

trajectory are achieved during trajectory optimization 

in an integrated problem. Both approaches can lead 

to very similar solutions in spite of their differences 

in staging formulation. Integrated approach can lead 

to better results because of simultaneous 

consideration of objective functions and effective 

constraints of two optimization problems of staging 

and trajectory. In paper[11] analysis of Euler 

approximation to a state constrained control problem 

is carried out. it shows that if the active constraints 

satisfy an independence condition and the 

Lagrangian satisfies a coercively condition, then 

locally there exists a solution to the Euler 

discretization, and the error is bounded by a constant 

times the mesh size. The paper[12] analyze second-

order Runge-Kutta approximations to a nonlinear 

optimal control problem with control constraints. If 

the optimal control has a derivative of bounded 

variation and a coercively condition holds, and it 

shows that for a special class of Runge-Kutta 

schemes, the error in the discrete approximating 

control is O(h2), where h is the mesh spacing.In this 

paper the trajectory optimization problem solved by 

steepest descent method, which is the type of indirect 

gradient method. In reference[6], the control variable 

is randomly chosen which will affect the accuracy to 

a great extent. This problem is solved in our paper, 

by carefully choosing the initial control variable by 

an new approach which is described in the following 

sections. To the author‟s best knowledge, the tuning 

of weighting is not done in any of the available 

literature. In this the papers the weighting factor is 

selected by proper tuning, and the proposed method 

is explained in the following sections. Also for the 

quick convergence of the objective function a 

multiplication factor is introduced. This will 

drastically increase the performance of the proposed 

system. The prescribed optimization technique is 

implemented using Euler‟s and Runge-kutta[2] 

integration methods and the performance is verified. 

 

1.1. Trajectory optimization problem 

A general problem statement for finite-

thrust trajectory optimization can be stated as 

follows [7]. A trajectory optimization or optimal 

control problem[14]can be formulated as a collection 

of phases. In general, the independent variable 

(time) for phase is defined in the region 

for many applications, and the 

phases are sequential, that is 

 

However, neither of those assumptions is required. 

Within phase the dynamics of the system are 

described by a set of dynamic variables. 

 
Made up of the state variables and the 

control variables, respectively. In addition, the 

dynamics may incorporate the parameters  

which are not dependent on . For clarity the phase-

dependent is dropped notation from the remaining 

discussion in thissection. However, it is important to 

remember that many complex problem descriptions 

require different dynamics and/or constraints, and a 

phase-dependent formulation accommodates this 

requirement. 

Typically the dynamics of the system are 

defined by a set of ordinary differential equations 

written in explicit form, which are referred to as the 

state or system equations,
 

 
Where is the dimension state vector. 

Initial conditions at time  are defined by, 

 
Where, 

 
And terminal conditions at the final time are 

defined by, 

 
Where, 

 
In addition, the solution must satisfy algebraic path 

constraints of the form, 

 
Where is a vector of size , as well as simple 

bounds on the state variables. 

 
And control variables, 

 
Note that an equality constraint can be imposed if the 

upper and lower bounds are equal, 

 
for some k. 

Finally, it may be convenient to evaluate expressions 

of the form, 

 
Which involve the quadrature functions  

collectively we refer to those functions evaluated 

during the phase, namely, 
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As the vector of continuous functions, similarly 

functions evaluated at a specific point, such as the 

boundary conditions  and 

are referred to as point 

functions. 

          The basic optimal control problem is to 

determine the k dimensional control vectors 

and parameters to minimize the 

performance index. 

 
Notice that the objective function may depend on 

quantities   equations of motion with non-rotating 

spherical earth[5] is given by, 

 

 

 

 
 

Here neglecting  and  since 

the rocket propagating in above vacuum, therefore 

the equations   becomes   

 

 

 

 
Trajectory optimization problem is 

formulated as optimal control problem. The 

nonlinear problem has to solve using numerical 

method. Steepest decent method is used to solve the 

problem. 

 

1.2 Euler’s method 

Euler method is a first-order numerical 

procedure for solving ordinary differential equations 

(ODEs) with a given initial value. The Euler method 

is a first-order method, which means that the local 

error (error per step) is proportional to the square of 

the step size, and the global error (error at a given 

time) is proportional to the step size. It also suffers 

from stability problems.Euler‟s method can be 

implemented both in simulator program and the 

opimal control problem. In simulator program the 

integration of   happens. That is given as 

follows.  

 

 

 

In opimal control the is integrating to get 

final  values. 

 

 

 
 

Where is the integration step 

size.  are the initial values of . 

Similarly are the initial values of 

.For optimal solutions, The optimality 

conditionis given by, 

 
 

1.3 Runge-Kutta method 

Runge-Kutta methods[7] are very popular 

because of their efficiency; and are used for in most 

solving problem numerically.  They are single-step 

methods, as the Euler methods[7]. 

There are many ways to evaluate the right-

hand side  that all agree to first order, but that 

have different coefficients of higher-order error 

terms. Adding up the right combination of these, it 

can eliminate the error terms order by order. That is 

the basic idea of the Runge-Kutta method. 

 

 

 

 

 
The fourth-order Runge-Kutta method 

requires four evaluations of the right-hand side. 

 

Methodology 
 In this section mathematical model of 

rocket trajectory is discussed first. To study the 

rocket motion under the influence of gravitational 

field, 2- D simulator is developed. The rocket motion 

is analyzed for a gravity turn trajectory. It is solved 

by Newton-Raphson method. Using gravity turn 

trajectory target is achieved by varying initial 

conditions to reach the target. From this we will get 

the characteristics of the required trajectory. Indirect 

methods require initial guesses for the control as 

well as adjoint variables.  

For finding the feasible steering profile, 

acceleration is assumed to be a linearly increasing 

quantity. So rate of change of velocity is 

approximated as linear function.This linear function 

is selected by polynomial approximation[16] that is 

by changing the functions randomly to fit the curve 

properly. 
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The vehicle acceleration is a linear function 

of time as given in the equation the constants 

are obtained by varying initial and final steering 

angle value. Thus tuning of constants is 

done. The initial and final  is thus obtained to be 

and  respectively from boundary 

conditions. 

Therefore by solving the equation 

using the initial and final values the appropriate 

values for   can be found out; 

 
A simulator program for rocket trajectory is 

then developed by putting the initial guess for 

control variable...The target can be successfully 

achieved only with t continuous monitoring of the 

position, velocity and flight path angle of the rocket. 

The state and control vectors are defined as, 

 

 

 

 
 

In this a trajectory optimization problem of 

a single stage launch vehicle is considered. The 

objective here is to generate the guidance command 

history such that the following 

concerns are takencare of, 

 

(1) At the final time , the specified terminal 

constraintsmust meet accurately. The terminal 

constraints include constraints on altitude, velocity 

and flight path angle (which is the angle made by the 

velocity vector with respect to the local horizontal). 

 

(2) The system should demand minimum guidance 

command, which can be ensured by formulating a 

„minimum time‟ problem. 

To achieve the above objectives, the 

following cost function is selected, which consists of 

terminal penalty terms and a dynamic control 

minimization term. 

 
An optimal control problem is developed for rocket 

trajectory and control parameter is optimized by 

steepest descent method. The method of steepest 

descent will generally converge linearly to the 

solution [14, 15]. The initial values for ad-joint 

variables are calculated by manual calculations using 

the terminal conditions of rocket. 

For optimal solutions, the optimality 

condition is given by, 

 
The weighting factor  should be selected as 

follows:- 

 

 
Thus weighting factor,  thus  obtained  is 

applied to the control variable  ,to update the initial 

alpha profile. 

 
Where  previous stage of  

Equation  is the gradiant function 

which optimizes the control variable. 

In the above equation,multiplication 

factor,  has to be addedto converge objective 

function value. The value has to multiplied with the 

weighting factor, . 

 
1.4 Summary  

The steps given below are adopted from [6] 

1. Start with an initial guess of control variable  

where  

2. Propagate the states from  to using  with 

initial conditions (Forward Integration of the 

SystemDynamics). 

3. Obtain  by using the boundary conditions 

(terminal boundary conditions). 

4. Propagate the costate vector from  to using 

step (iii) values as the initial values (Backward 

integration ofCostate Equations). 

5. Calculate the gradient  from  to  

6. Calculate the control update 

where is the 

learningrate. 

7. Repeat from step (2) to step (6) until optimality 

conditions are meet within a specified tolerance. 
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Table.1  EULER‟S METHOD 

Final objective function value=  

Total number of iterations=81 

 

I. Result analysis 
             The results obtained by Euler‟s method and 

Runge-Kutta methods are given in table 1 and 

2.Runge-kutta and Euler‟s methods of integration are 

performed. In Runge-kutta method of integration, the 

step size is different for each integration step. But in 

Euler‟s method the steps sizes are equal. Due to this 

Runge-Kutta method of integration is comparatively 

accurate.  

Figure(1) shows the variations in control 

variable with respect to time. Since the initial value 

of the control variable is a guess, it is not optimal, 

hence rate of change of initial control variable is 

high and therefore it requires more fuel to complete 

the trajectory. 

 

Fig.1: Initial and final control variable array 

 

Figure(2) shows the variation of objective 

function in two different methods. From this graph 

we can find that the convergence characteristics of 

two methods are same but Runge-Kutta method 

needs more iteration to find its minima then also it is 

efficient by calculating the efficiency. Figure(3) 

shows the variation in flight path angle with respect 

to time we can see that the performance in achieving 

target in both methods are almost same. 

Table.2RUNGE-KUTTA METHOD 

Parametr

es 

Intial

valu

e 

Final 

Value 

Target 

Value 

Error 

Obtaine

d 

Height 
    

Velocity 
    

     

Flightpat

h Angle 
    

 

Final objective function value=  

Total number of iterations =116 

 
Fig.2Objective function variations in Runge-Kutta 

and Euler‟s method 

 
Fig.3 Final value of velocity difference in Runge-

kutta method and Euler‟s method 

Parame

tres 

Intialva
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Final 
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Fig.4Final position achieved by rocket using Runge-

kutta method and Euler‟s method 

 

Figure(4) and (5) indicates the velocity 

profile and position with respect to time and by 

analyzing both graphs we can estimate the efficiency 

of Runge-Kutta method. 

 

II. Conclusion 

Rocket trajectories are optimized to achieve 

the target, by either minimum time, control forces or 

fuel. To study the rocket motion under the influence 

of gravitational field, 2-D simulator is developed. 

The rocket motion is analyzed for a gravity turn 

trajectory and target is achieved by varying initial 

conditions to reach the target. Design of optimal 

trajectory for a single stage rocket is a two point 

boundary problem. Trajectory is designed for a 

single stage liquid rocket, for given initial and final 

conditions using equations of motion of rocket in 2-

D plane. The trajectory optimized for minimum time 

of flight using the pitch angle as control 

variable.Hamiltonian is formulated for the given 

constraints. The non-linear equation is solved using 

steepest descent method.Results are compared for 

Runge-kutta integration and Euler integration 

method.Runge-kutta integration gives high accuracy. 

By analyzing the results the converging 

characteristics of two methods are almost same but 

Runge-Kutta method needsmore time to settle down 

to the minimum value.  
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